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Broadside, Edge-Coupled, Symmetric Strip
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Abstract —This paper analyzes the propagation parameters of the gen-
eral, shielded, broadside, edge-coupled, symmetric strip transmission line
using the transverse transmission line method combined with the varia-
tional technigue in the space domain. A simple approximation to the charge
distribution on the conducting strip is assumed. Extensive design data on
the characteristic impedances and effective dielectric constants are gener-
ated for a) broadside, edge-coupled, homogeneous striplines, b) broadside,
edge-coupled, microstrip lines, and c) broadside, edge-coupled, microstrip
lines with inverted dielectric. The effect of the shielding side walls on the
characteristic impedances is investigated. The results presented should find
application in the design and fabrication of directional couplers and filters
having complex electric responses.

I. INTRODUCTION

ICROWAVE circuits used in a communication sys-

tem extensively use coupled-line structures as the
basic building blocks for directional couplers, filters, and
various other important devices [1]-[3]. Depending on the
excitation, a pair of coupled lines can support two propa-
gation modes, namely, the even-mode and the odd-mode.
Such coupled lines in various microstrip-like configurations
yield small deviations from equal-mode phase velocities [4],
[5]. Large phase velocity deviations can be obtained in
inhomogeneous broadside-coupled striplines [6], [7]. It has
been shown that coupled lines which offer large phase
velocity deviations can be used to design some interesting
filters [7] and directional couplers [8]. Various two-port
coupled-line configurations in a homogeneous as well as an
inhomogeneous medium are reported in the literature [9],
[10]. The electrical response of these coupled-line structures
have been studied using the ABCD and the impedance
matrix formulations [9]-[11]. The matrix formulation tech-
nique requires a prior knowledge of the even- and odd-mode
characteristic impedances and the effective dielectric con-
stants. For a pair of coupled lines in a homogeneous as
well as an inhomogeneous medium, extensive data on the
impedance characteristics are available in the literature
[41-[7].

In recent years, there has been considerable interest in
multiconductor coupled transmission lines in view of their
application in a variety of MIC components. Some of the
examples are: three-line microstrip couplers [12], interdig-
ital or Lange couplers [13], [14], and meander folded
couplers [15]. Depending on the terminal conditions, these
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Fig. 1 A schematic of three-layer, broadside, edge-coupled stripline.

coupled transmission lines can support several propagating
modes. In order to study the electric response produced by
these coupled transmission lines, for various excitations, a
knowledge of the characteristic impedances and the effec-
tive dielectric constants for all the possible propagating
modes is essential. Several authors have reported the im-
pedance characteristics of multiconductor transmission
lines using various analytical as well as the network analy-
sis techniques [12]-[18]. Recently, impedance characteris-
tics of homogeneous, shielded, broadside, edge-coupled,
strip transmission lines (Fig. 1 with €,; = ¢,, = 1) have been
reported [18]. Its inhomogeneous counterpart is also re-
ported in the literature [16]. However, no design data on
the impedance characteristics and effective dielectric con-
stants are available.

In this paper, the three-layer, broadside, edge-coupled,
strip transmission line is analyzed using the transverse
transmission line method combined with the variational
technique in the space domain. The characteristic imped-
ances and the effective dielectric constants of all the possi-
ble propagating modes are computed for a) broadside,
edge-coupled, homogeneous striplines, b) broadside, edge-
coupled, microstrip lines, and c) broadside, edge-coupled,
microstrip lines with inverted dielectric. The effect of
shielding side walls on the impedance characteristics is
investigated. The impedance and effective dielectric con-
stant data presented should be useful in designing direc-
tional couplers and filters with complex electric responses.

II. ANALYSIS

The schematic diagram of the three-layer, broadside,
edge-coupled, transmission line to be analyzed is shown in
Fig. 1. This structure can support four propagation modes
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1) even-even mode (ee): 44’ magnetic wall, BB’ mag-
netic wall

2) even—odd mode (eo0): 44" magnetic wall, BB’ elec-
tric wall

3) odd-even mode (oe): AA’ clectric wall, BB’ mag-
netic wall

4) odd-odd mode (00): AA’ electric wall, BB’ electric
wall.

To compute the characteristic impedances, it is sufficient
to analyze only one quarter of the structure with ap-
propriate boundary conditions at x=c/2 and y=>5/2,
corresponding to four different modes.

The characteristic impedance (Z) and the effective di-
electric constant (e ) of a general TEM transmission line
can be written as

z=— (1)
0y CC,
C
€eff=60 )

where C and C, are the line capacitances of the transmis-
sion line with and without the dielectrics, respectively, and
v, is the propagation velocity of electromagnetic energy in
free space. The line capacitances for each mode can be
obtained from the variational expression [19]

o]
C= L 5t ‘
ffG(x’)’o/XO’)’o)f(x)f(xo) dx dx,
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®3)

Here, f(x) is the charge distribution on the conducting
strip s, and G(x, y, /Xy, Yo) is the Green’s function at the
charge plane y = y,. This Green’s function is the solution
of the Poisson’s equation

V6 (x, 3/%0 ) =~ 8(x = x0)8(y = %) (&)

where 8(x — x,) and 8(y — y,) are the Dirac’s delta func-
tions and e is the absolute dielectric constant of the medium
containing the charge. For the present problem, applying
the transverse transmission line method [5], [20], the Green’s
function for all the four modes can be expressed as

oe
[o]e]

G(x, Yo/ %o, yo)(:f))

4 . . na
- Z nmY (€€ Sln(anO)SIH(an); Bn = _C_
odd ( € )
a| odd o
€ven
even (5)
where Y., Y., Y., and Y, are the admittances at the

charge plane y = y, for the four propagating modes.
The admittance Y at the charge plane y = y,(Fig. 1.) for
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a specific mode is given by
Y=Y+, (6)

where Y, and Y, are the admittances at y=(b—d)/2
looking into the negative and positive y directions, respec-
tively. Using the standard expression to obtain the admit-
tance of a sgction of transmission line, we get

nw(b—d nad\*
Y=¢, erlcoth———zz——)+e,2(tanh—~27) } (7)
Here, P =1 for ee and oe modes, and P = —1 for eo and

00 modes.

In order to evaluate the line capacitances, the charge
distribution f(x) has to be specified for each mode. It has
been shown in an earlier paper [5] that a charge distribu-
tion of the type given below yields fairly accurate values of
the capacitance for coupled microstrip-like transmission

lines
2 c—s—w\?
=]
c—s Pt
2 =2
0; otherwise.

1
il ®)

WX

Substituting (5) and (8) in (3), and evaluating the integral,
we obtain

00 o0dd eo
where -
p,,=%( Bfw)z; B="T (9b)
L= sin( —'Bﬂz‘—v- )sin( En_(_c__—_;—_w)_) (9¢)
o = B
.cos( 'ng ) + ( 'B'éw ){( -'83—w>2—6}sin( ng ) +6] (9d)
and Y, Y., Y., and Y, are given by (7).

IIL

Numerical results for the line capacitances of the broad-
side, edge-coupled, striplines are calculated by evaluating
(9). The characteristic impedances and the effective dielec-
tric constants are then obtained from (1) and (2). The
effects of the shielding side walls on the computed char-
acteristic impedances have been investigated. The value of
c/bis varied from 1 to 10. It is observed that the even—even
and the odd-even mode impedances (Z,., Z,.) increase as
the aspect ratio c¢/b is increased. The change in the
even—odd and the odd-odd mode impedances (Z,,, Z,,)

NUMERICAL RESULTS
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Fig. 2. The computed characteristic impedances of the broadside, edge-  Fig. 3. The computed characteristic impedances of the broadside, edge-
coupled, stripline with air dielectric, for a fixed broadside spacing coupled, stripline with air dielectric, for a fixed edge spacing s,¢/b =

d,t/b=0,c/b=10,d/b=10.2. (a) Bven-even and even-odd mode 0,c/b=10,s5/b=0.2. (a) Even—even and even—odd mode impedances.
impedances. (b) Odd—even and odd-odd mode impedances. (b) Odd—even and odd—odd mode impedances.
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Fig. 4. The computed characteristic impedances of the broadside, edge-  Fig. 5. The computed characteristic impedances of the broadside, edge-
coupled, microstrip, for a fixed broadside spacing d,t/b=0,c/b= coupled, microstrip, for a fixed edge spacing s,¢/b=0,¢c/b=10,5/b
10,d /b= 0.2, ¢, =10. (a) Even—even and even—odd mode impedances. =0.2,¢,=10. (a) Even-even and even-odd mode impedances. (b)

(b) Odd-even and odd-odd mode impedances. Odd-even and odd-odd mode impedances.
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Fig. 6. The computed effective dielectric constants of the broadside,
edge-coupled, microstrip, s/b=d/b=02,t/b=0,c/b=10,¢,=10.

with an increase in ¢ /b is negligible. For all the computa-
tions, the shielding side walls are assumed to be sufficiently
away (c/b =10) so that they have negligible effect on the
propagation characteristics.

Fig. 2(a) and (b) shows the computed characteristic
impedances (Z,,, Z.,) and (Z,, Z,,), respectively, of the
broadside, edge-coupled, stripline with air dielectric, for a
fixed value of d/b. Increasing w/b, for a fixed value of
s /b, decreases all the four impedances. For a fixed value of
w/b, Z.. and Z,, decrease, whereas Z . and Z, increase,
with an increase in s /b. The variations in Z, and Z_,, with
increasing s /b, are much less as compared with those in
Z.and Z .

Fig. 3(a) and (b) illustrates the computed characteristic
impedances (Z.,., Z.,) and (Z,, Z,,), respectively, of the
same structure for a fixed value of s /b. Increasing w/ b, for
a fixed value of d /b, decreases all the four impedances.
For a fixed value of w/b, Z,, and Z_, decrease, while Z
and Z_ increase, with an increase in d/b. It is observed
that impedance values from 10 to 400 @ are possible for the
structural parameters in the range 0.1<w/b<1.0, 0.2 <
s/b<1.0,and 0.1<d/b<04.

The computed characteristic impedances (Z,., Z.,) and
(Ze» Z,,,) of the broadside, edge-coupled, microstrip, for a
fixed value of d/b, are plotted in Fig. 4(a) and (b),
respectively. Fig. 5(a) and (b) shows the computed
(Zoor Zo,) and (Z,,, Z,,) of the same structure, for a fixed
value of s /b, respectively. It is seen that the variations of
Zor Zoys Z,,. and Z_ are similar to those obtained in the

ce” €0’
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Fig. 7. The computed characteristic impedances of the broadside, edge-
coupled, microstrip with inverted dielectric, for a fixed broadside
spacing d,t/6=0,c¢/b=10,d/b=02,¢,=10. (a) Even-even and
even—odd mode impedances. (b) Odd—even and odd-odd mode imped-
ances.
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Fig. 8. The computed characteristic impedances of the broadside, edge-
coupled, microstrip with inverted dielectric, for a fixed edge spacing
s,t/b=0,c/b=10,5/b=02,¢,=10. (a) Even—even and even—odd
mode impedances. (b) Odd-even and odd—odd mode impedances.
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Fig. 9. The computed effective dielectric constants of the broadside,
edge-coupled, microstrip with inverted dielectric, s/b=d/b=0.2,1/b
=0,c/b=10,¢,=10.

broadside, edge-coupled, homogeneous stripline. For a di-

electric of relative permittivity ¢, = 10, the impedance val-

ues from 10 to 140 & are obtained for the structural
parameters in the range 0.1<w/b<1.0, 02<s/b<1.0,
and 0.1 < d /b < 0.4. For fixed values of s /b and d /b, the
computed effective dielectric constants of the broadside,
edge-coupled, microstrip are plotted in Fig. 6. With an
increase in w/b, the even-even and the odd—even mode
effective dielectric constants (e, €, ) increase, while the
even—odd and odd-odd mode effective dielectric constants

(€e0, €4o) decrease. It is seen that the values of €., and €,

are considerably greater than those of €., and €.

The computed (Z,,, Z,,) and (Z,,, Z,,) of the broad-
side, edge-coupled, microstrip with inverted dielectric, for a
fixed value of d/b, are plotted in Fig. 7(a) and (b),
respectively. For a fixed value of s/b, the computed im-
pedances (Z,,, Z.,) and (Z,, Z,,) are illustrated in Fig.
8(a) and (b), respectively. It is observed that the variations
of Z.,2,,2Z,, and Z,, are similar to those obtained in
the broadside, edge-coupled, microstrip. However, the vari-
ations in Z,, and Z_, with increasing s/b, are negligible.
For the structural parameters 0.1 < w/b<1.0,02<s/b<
1.0, 0.1<d/b< 04, and ¢,=10, the impedance values
obtained are in the range 10 to 320 £. The computed
effective dielectric constants of the broadside edge-coupled
microstrip with inverted dielectric are illustrated in Fig. 9.
It is seen that, with an increase in w/b, €., and €, increase,
while €., and e, decrease. The values of €., and ¢, are
considerably greater than those of ¢, and €.
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IV. CONCLUSION

A simple technique to analyze the broadside, edge-cou-
pled, strip transmission lines has been described. Extensive
design data on the characteristic impedances and the effec-
tive dielectric constants for the broadside, edge-coupled,
striplines in a homogeiieous, as well as an inhomogeneous,
medium are presented, It is observed that the values of the
even—even and odd-even mode effective dielectric con-
stants in the case of the broadside, edge-coupled, striplines
in an inhomogeneous medium are considerably different
from those of the even—odd and odd—odd mode effective
dielectric constants. The effect of the shielding side walls
on the impedance characteristics has been studied. The
effect is more pronounced for the even—even and odd—even
mode impedances than for the even—odd and odd—odd
mode impedances. The accuracy of the method presented
can further be enhanced by considering a more complex
charge distribution on the strip conductor. This will, how-
ever, increase the computational time.

The data presented in this paper should be useful in
designing directional couplers and filters for MIC applica-
tion. A study of the electric response for various terminal
conditions, physical dimensions, and dielectric constants
should prove helpful in designing some new devices.
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